Helpful hints for identities in textbook: 7.1 (part2) \rightarrow \#49, 57, 58, 62, 64, 66, 71, 73, 80, 83

VERIFY

\rightarrow keep simpler side "as is" (right side)

\rightarrow transform/rewrite/simplify ONLY THE LEFT SIDE to show that it equals the right side.
49. rewrite in terms of \sin / \cos, get common denominator, combine fractions, substitute Pythagorean identity, use reciprocal identity
57. factor difference of squares, substitute Pythagorean identity
58. substitute Pythagorean identity, rewrite in terms of \sin / \cos, distribute and cancel, substitute Pythagorean identity
62. substitute Pythagorean identity, split fraction into two terms (keep common denominator for each term), use reciprocal identity
64. rewrite in terms of \sin / cos; in the denominator \rightarrow get common denominator and combine fractions; flip and multiply since dividing by a fraction is the same as multiplying by its reciprocal; cancel
66. rewrite in terms of \sin / \cos; \rightarrow in the numerator: combine fractions as is; \rightarrow in the denominator: get common denominator and combine fractions; Flip and multiply since dividing by a fraction is the same as multiplying by its reciprocal; Cancel then use quotient identity
71. get common denominator and use FOIL; combine fractions, add like terms in numerator; substitute Pythagorean identity in denom
73. get common denominator (use parentheses around all parts when multiplying, use FOIL), combine fractions, add like terms in numerator; substitute Pythagorean identity in denominator, rewrite $\cos ^{2} x$ as $\cos x \cdot \cos x$, push multiplier to the front, rewrite using quotient identity and reciprocal identity
80. multiply given fraction by $\frac{1+\cos A}{1+\cos A}$ then rewrite denominator using a Pythagorean identity and cancel like terms; now rewrite $\cot A$ using a quotient identity, combine fractions since there is a common denom, add like terms, rewrite using reciprocal identity
83. multiply given fraction by $\frac{1+\sin \theta}{1+\sin \theta}$ (using FOIL in denominator); rewrite denominator using a Pythagorean identity then cancel, split fraction into two terms (keep common denominator for each term), rewrite using reciprocal identity and quotient identity

